1. Welt
  2. Theorien
  3. #343
Alexander Fufaev

Millersche Indizes: so beschreibst Du Kristallebenen!

aus dem Bereich: Theorien
Optionen

Definition

Millersche Indizes (hkl) - sind drei ganze Zahlen, die zur Beschreibung der Kristallebenen dienen.

Stell Dir beispielsweise ein kubisches raumzentriertes Bravais-Gitter vor mit den Gitterkonstanten \(a,b,c\). An jeder Ecke des Würfels sitzt jeweils ein Gitterpunkt. Aber auch in der Mitte des Würfels gibt es einen Gitterpunkt.

Nun kannst Du Dir einige nützliche Ebenen im Gitter betrachten (Netzebenen genannt), die unterschiedliche Anzahl an Gitterpunkten enthalten, je nach dem, welche Netzebene Du betrachtest.

Warum ist es denn überhaupt wichtig, anzugeben, welche Netzebene Du betrachtest? In einem Kristall ist beispielsweise die elektrische Leitfähigkeit unterschiedlich je nach gemessener Richtung im Kristall. Oder um die kompliziert aussehnden Dispersionsrelation-Diagramme E(k) (Energie in Abhängigkeit von der Wellenzahl) zu verstehen, musst Du zuerst wissen, wie Millersche-Indizes dazu benutzt werden, um die Netzebenen und Richtungen im Kristall anzugeben.

Wie bestimme ich Miller-Indizes?

  1. Schritt #1: Bestimme Schnittpunkte mit den Kristallachsen in Einheiten der Gitterkonstanten.

    Beispiel: Drei Schnittpunkte \( \frac{1}{2}a, 4b, -1c \) ergeben: \( \frac{1}{2}, \, 4, \, -1 \).
  2. Schritt #2: Bilde den Kehrwert der Schnittpunkte.

    Nach dem obigen Beispiel also: \( 2, \, \frac{1}{4}, \, -1 \).
  3. Schritt #3: Reduziere die Kehrwerte zu drei kleinstmöglichen ganzen Zahlen.

    Nach dem obigen Beispiel musst Du, um den Bruch 1/4 zu eliminieren, alle drei Zahlen mit 4 multiplizieren, dann bekommst Du: \( 8, \, 1, \, -4 \). Da Du ja alle Zahlen mit 4 multipliziert hast, bleibt ihr Verhältnis natürlich gleich.

    Die Millerschen Indizes lauten also für dieses Beispiel: \( \left( 8 \, 1 \, -4 \right) \). Um die Miller-Indizes etwas kompakter zu notieren, wird das Minuszeichen über der negativen Zahl geschrieben: \( \left( 8 \, 1 \, \bar{4} \right) \).

Das obige Beispiel repräsentiert natürlich nicht nur eine Ebene, sondern unendlich viele Ebenenen, die parallel zueinander liegen und den Abstand der Gitterkonstante zueinander haben.

Beispiel: Millersche Indizes bestimmen
Millersche Indizes - (221) Netzebene Speichern | Info
Netzebenen (221); mit den Gitterkonstanten a, b und c.

Gegeben ist ein Gitter mit den Gitterkonstanten \(a, \, b, \, c\).

  • Eine Ebene schneidet die a-Achse an der Stelle \( \frac{1}{2} \), die b-Achse an der Stelle \( \frac{1}{2} \) und die c-Achse an der Stelle \( 1 \).
  • Die Kehrwerte dieser Schnittpunkte sind \( 2 \), \( 2 \) und \( 1 \)
  • Da es bereits die kleinstmöglichen ganzen Zahlen sind, bist Du hier schon fertig. Die Millerschen Indizes lauten für diese Ebenenschar: \( \left(2 \, 2 \, 1\right) \).
Und noch etwas! Schneidet die Netzebene keine der Kristallachsen, dann bedeutet es, dass der Schnittpunkt im Unendlichen liegt, d.h. \( \infty \). Bilden des Kehrwerts ergibt den Millerschen Index \( \frac{1}{\infty} = 0 \).
Weltkarte
Verwalten
Profil
Die Stimme fragt...
Wie erlange ich den Zugang?

Um das Portal von Ak'tazun betreten zu können, musst Du die rote Pille schlucken. Nachdem Du durch das Portal gegangen bist, gelangst Du in die Matrix, wo Du beispielsweise folgendes tun kannst:

  • Inhalte hinzufügen & verwalten
  • Einige Inhalte kommentieren
  • Mittels Kommunikator RT2000 chatten
  • WhatsApp-Gruppe beitreten
Bist Du dabei?
Ja, bin dabei!
Portale in die anderen Welten

Reise zu den sicheren anderen Welten des Internets, um nach dem Wissen zu suchen. Findest Du eine Welt ("Internetseite" :D) besonders interessant, dann kannst Du in der Universaldenkerwelt ein Portal zu dieser Welt erbauen, um den anderen Besuchern den schnellen Zugang dazu zu gewährleisten.

Portalraum betreten
Kommunikator
ONLINE 5
Gäste online: 5
Denker online: 0
Der Kommunikator RT2000 funktioniert nur innerhalb der Matrix!
Ich will in die Matrix!Mayday! Kontakt aufnehmen.