1. Welt
  2. Theorien
  3. #1265
Alexander Fufaev

Links- und rechtshändiges Koordinatensystem (Links- und Rechtssystem)

aus dem Bereich: Theorien
Mehr dazu

Definition

Rechtshändiges Koordinatensystem (ugs. Rechtssystem) - sind im \(n\)-dimensionalen Fall ein geordneter Tupel von \(n\) Vektoren (\(\boldsymbol{x}_1, ~ \boldsymbol{x}_2,~...,~\boldsymbol{x}_n\)), dessen Determinante, die durch die Matrix mit den Spaltenvektoren festgelegt ist, positiv ist. Bei einem linkshändigen Koordinatensystem ist die Determinante negativ.

Beispiel #1: Zweidimensionales Koordinatensystem

Um die Frage zu klären, ob ein zweidimensionales kartesisches Koordinatensystem rechtshändig oder linkshändig ist, muss die Reihenfolge der Einheitsvektoren \(\hat{x}\) und \(\hat{y}\), die das Koordinatensystem aufspannen, festgelegt werden, denn die beiden geordneten Tupel (\(\hat{x},~\hat{y}\)) und (\(\hat{y},~\hat{x}\)) sind nicht gleich! Die beiden Determinanten der Matrizen für die obigen Tupel von Spaltenvektoren sind nämlich unterschiedlich.

(\(\hat{x},~\hat{y}\)) ist ein rechtshändiges Koordinatensystem, weil die Determinante positiv ist: \[ |\hat{x}, ~\hat{y}| ~=~ \begin{vmatrix}1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \]

(\(\hat{y},~\hat{x}\)) ist ein linkshändiges Koordinatensystem, weil die Determinante negativ ist: \[ |\hat{y}, ~\hat{x}| ~=~ \begin{vmatrix}0 & 1 \\ 1 & 0 \end{vmatrix} = -1 \]

Wie die Determinante einer beliebigen nxn-matrix berechnet werden kann, verrät der Laplace-Entwicklungssatz.

Beispiel #2: Dreidimensionales Koordinatensystem
Rechtssystem Speichern | Info
Rechtshändiges orthogonales Koordinatensystem mit (\(\hat{x},~\hat{y},~\hat{z}\)).

Betrachte ein dreidimensionales kartesisches Koordinatensystem mit den Basiseinheitsvektoren \(\hat{x}\), \(\hat{y}\) und \(\hat{z}\).

Der Tupel (\(\hat{x},~\hat{y},~\hat{z}\)) bildet ein rechtshändiges Koordinatensystem, weil die Determinante positiv ist: \[ \begin{vmatrix}1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{vmatrix} = 1 \]

Der Tupel (\(\hat{z},~\hat{y},~\hat{x}\)) bildet ein linkshändiges Koordinatensystem, weil die Determinante negativ ist: \[ \begin{vmatrix}0 & 0 & 1\\ 0 & 1 & 0 \\ 1 & 0 & 0\end{vmatrix} = -1 \]

Der Tupel (\(\hat{z},~\hat{x},~\hat{y}\)) bildet wieder ein rechtshändiges Koordinatensystem, weil die Determinante positiv ist: \[ \begin{vmatrix}0 & 0 & 1\\ 1 & 0 & 0 \\ 0 & 1 & 0\end{vmatrix} = 1 \]

An dem Beispiel #2 ist deutlich zu erkennen, dass eine ungerade Permutation von Vektoren des Tupels (d.h. in diesem Fall eine einzige Vertauschung irgendeines Vektors) aus einem rechtshändigen Koordinatensystem ein linkshändiges macht. Eine gerade Permutation dagegen (d.h. in diesem Fall zwei Vertauschung irgendeines Vektors) ändert nichts an der Orientierung des Koordinatensystems; es bleibt rechtshändig.

Natürlich ist es in der Physik und Mathematik unpraktisch ständig das Vorzeichen der Determinante zu bestimmen, um zu überprüfen, ob das Koordinatensystem links- oder rechtshändig ist. Dafür gibt es eine einfache Regel! Dazu wird folgendes festgelegt:

Drei-Finger-Regel:

  1. Der Daumen zeigt in die Richtung des ersten Spaltenvektors. Zum Beispiel beim Tupel (\(\boldsymbol{x}\), \(\boldsymbol{y}\), \(\boldsymbol{z}\)) ist es die \(x\)-Richtung.
  2. Der Zeigefinger zeigt in die Richtung des zweiten Spaltenvektors. Zum Beispiel beim Tupel (\(\boldsymbol{x}\), \(\boldsymbol{y}\), \(\boldsymbol{z}\)) ist es die \(y\)-Richtung.
  3. Der Mittelfinger zeigt in die Richtung des dritten Spaltenvektors. Zum Beispiel beim Tupel (\(\boldsymbol{x}\), \(\boldsymbol{y}\), \(\boldsymbol{z}\)) ist es die \(z\)-Richtung.

Wenn das betrachtete Koordinatensystem ein rechtshändiges Koordinatensystem ist, dann ist die festgelegte Anordnung der Finger nur mit der rechten Hand möglich! Mit der linken Hand dagegen ist es aufgrund der Physiologie des Menschen nicht möglich (Cyborgs o.Ä. sind ausgeschlossen). Wenn das betrachtete Koordinatensystem aber ein linkshändiges Koordinatensystem darstellt, dann ist die festgelegte Anordnung der Finger nur mit der linken Hand möglich!

Weltkarte
Verwalten
Profil
Die Stimme fragt...
Wie erlange ich den Zugang?

Um das Portal von Ak'tazun betreten zu können, musst Du die rote Pille schlucken. Nachdem Du durch das Portal gegangen bist, gelangst Du in die Matrix, wo Du beispielsweise folgendes tun kannst:

  • Inhalte hinzufügen & verwalten
  • Einige Inhalte kommentieren
  • Mittels Kommunikator RT2000 chatten
  • WhatsApp-Gruppe beitreten
Bist Du dabei?
Ja, bin dabei!
Portale in die anderen Welten

Reise zu den sicheren anderen Welten des Internets, um nach dem Wissen zu suchen. Findest Du eine Welt besonders interessant, dann kannst Du in der Universaldenkerwelt ein Portal zu dieser Welt erbauen, um den anderen Besuchern den schnellen Zugang dazu zu gewährleisten.

Portalraum betreten
Kommunikator
ONLINE 1
Gäste online: 1
Denker online: 0
Der Kommunikator RT2000 funktioniert nur innerhalb der Matrix!
Ich will in die Matrix!Mayday! Kontakt aufnehmen.