1. Welt
  2. Quests
  3. #925
Alexander Fufaev

Sonnenenergie & Weltenergieverbrauch

aus dem Bereich: Quests
Optionen

Deine Aufgabe ist...

Die Solarkonstante beträgt \( \mathcal{E}_{\text S} ~=~ 1367 \, \frac{\text W}{\text{m}^2} \) und sagt aus, wie viel Energie innerhalb einer Stunde auf einen Quadratmeter bei der Erde von der Sonne ankommt.

  1. Wie viel Leistung kommt von der Sonne bei uns auf der Erde an?
  2. Nach einer Energiestudie von 2016 verbraucht die Menschheit 550 EJ ("E" steht für "Exa") pro Jahr. Kann dieser Energieverbrauch theoretisch durch die Sonnenenergie gedeckt werden?
Lösungstipps

Tipp zu (a): Benutze die Solarkonstante und die Kreisfläche mit dem Erdradius \( r = 6371 \, \text{km} \). Die Kreisfläche soll einfachheitshalber die Erde darstellen.

Tipp zu (b): Nutze Dein Ergebnis aus (a) und rechne es für ein Jahr aus. Vergleiche dann den Weltenergieverbrauch mit dem berechneten Energiewert.

Lösung zu (a) anzeigen

Die Solarkonstante ist bekannt und gibt die Leistung pro Quadratmeter an: 1 \[ \mathcal{E}_{\text S} ~=~ 1367 \, \frac{\text W}{\text{m}^2} \]

Jetzt musst Du herausfinden, wie groß die Fläche der Erde ist, die der Sonne zugewandt ist. Um die Rechnung zu vereinfachen, kannst Du beispielsweise annehmen, dass diese Fläche eine Kreisfläche ist mit dem Radius der Erde. Die Erde hat den Radius \( r = 6371 \, \text{km} \). Damit beträgt die runde Erdfläche \(A_{\text E}\): 2 \[ A_{\text E} ~=~ \pi \, r^2 \]

Multipliziere nur noch 1 und 2 miteinander, um die Leistung \( P_{\text E} \) zu bekommen, die von der Sonne auf der Erdfläche "landet". 3 \[ P_{\text E} ~=~ \mathcal{E}_{\text S} \, \pi \, r^2 ~=~ 1367 \, \frac{\text W}{\text{m}^2} * \pi * (6371 000 \,\text{m})^2 ~=~ 1.743 * 10^{17} \, \text{W} ~=~ 174.3 \, \text{PW} \]

"P" in "PW" heißt "Peta" und steht als Abkürzung für \( 10^{15} \).

Lösung zu (b) anzeigen

In (a) hast Du herausgefunden, dass die Sonne eine Leistung von \( P_{\text E} ~=~ 174.3 \, \text{PW} \) der Erde liefert. Das entspricht einer Energie von \( 174.3 \, \frac{\text{PJ}}{\text s} \)!

Um die Energie pro Jahr (365 Tage) auszurechnen, multipliziere einfach den Energiewert pro Sekunde mit 60*60*24*365 = 31536000 Sekunden: 4 \[ 174.3 \, \frac{\text{PJ}}{\text s} * 31536000 \, \text{s} ~=~ 5.497*10^{24} \, \text{J} ~=~ 5.497 \,\text{YJ} \]

"Y"(Yotta) bei "YJ" ist eine Abkürzung für \(10^{24} \).

Der Weltenergieverbrauch von \( 550 \, \text{EJ} \) macht davon NUR 0.01% aus: 5 \[ \frac{550 * 10^{18} \, \text{J}}{5.497*10^{24} \, \text{J}}*100\% ~=~ 0.01\% \]

Solarenergie hat ein großes Potenzial für die Zukunft der Erde!

Weltkarte
Verwalten
Profil
Die Stimme fragt...
Wie erlange ich den Zugang?

Um das Portal von Ak'tazun betreten zu können, musst Du die rote Pille schlucken. Nachdem Du durch das Portal gegangen bist, gelangst Du in die Matrix, wo Du beispielsweise folgendes tun kannst:

  • Inhalte hinzufügen & verwalten
  • Einige Inhalte kommentieren
  • Mittels Kommunikator RT2000 chatten
  • WhatsApp-Gruppe beitreten
Bist Du dabei?
Ja, bin dabei!
Portale in die anderen Welten

Reise zu den sicheren anderen Welten des Internets, um nach dem Wissen zu suchen. Findest Du eine Welt ("Internetseite" :D) besonders interessant, dann kannst Du in der Universaldenkerwelt ein Portal zu dieser Welt erbauen, um den anderen Besuchern den schnellen Zugang dazu zu gewährleisten.

Portalraum betreten
Kommunikator
ONLINE 6
Gäste online: 6
Denker online: 0
Der Kommunikator RT2000 funktioniert nur innerhalb der Matrix!
Ich will in die Matrix!Mayday! Kontakt aufnehmen.